SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process.
نویسندگان
چکیده
Efficient sterol influx in the yeast Saccharomyces cerevisiae is restricted to anaerobiosis or to haem deficiency resulting from mutations. Constitutive expression of SUT1, an hypoxic gene encoding a transcriptional regulator, induces sterol uptake in aerobiosis. A genome-wide approach using DNA microarray was used to identify the mediators of SUT1 effects on aerobic sterol uptake. A total of 121 ORFs (open reading frames) were significantly and differentially expressed after SUT1 overexpression, 61 down-regulated and 60 up-regulated. Among these genes, the role of the putative ABC transporter (ATP-binding-cassette transporter) Aus1, and of the cell-wall mannoprotein Dan1, was characterized better. These two genes play an essential role in aerobic sterol uptake, since their deletion compromised the SUT1 effects, but individual overexpression of either of these genes in a wild-type background was not sufficient for this process. However, constitutive co-expression of AUS1 and DAN1 in a wild-type background resulted in sterol influx in aerobiosis. These results suggest that the corresponding proteins may act synergistically in vivo to promote sterol uptake.
منابع مشابه
The Cdc42 effectors Ste20, Cla4 and Skm1 down-regulate the expression of genes involved in sterol uptake by a MAPK-independent pathway
In Saccharomyces cerevisiae, the Rho-type GTPase Cdc42 regulates polarized growth through its effectors, including the p21-activated kinases (PAKs) Ste20, Cla4 and Skm1. Previously, we demonstrated that Ste20 interacts with several proteins involved in sterol synthesis that are crucial for cell polarization. Under anaerobic conditions, sterols cannot be synthesized and need to be imported into ...
متن کاملThe Cdc42 effectors Ste20, Cla4, and Skm1 down-regulate the expression of genes involved in sterol uptake by a mitogen-activated protein kinase-independent pathway.
In Saccharomyces cerevisiae, the Rho-type GTPase Cdc42 regulates polarized growth through its effectors, including the p21-activated kinases (PAKs) Ste20, Cla4, and Skm1. Previously, we demonstrated that Ste20 interacts with several proteins involved in sterol synthesis that are crucial for cell polarization. Under anaerobic conditions, sterols cannot be synthesized and need to be imported into...
متن کاملThe Candida glabrata putative sterol transporter gene CgAUS1 protects cells against azoles in the presence of serum.
OBJECTIVES The uptake of endogenous sterol from serum may allow Candida glabrata to survive azole treatment. This study aims to determine the contribution of a sterol transporter that alters fluconazole sensitivity in the presence of serum. METHODS Bioinformatic analysis predicted CgAUS1 as the C. glabrata orthologue of the Saccharomyces cerevisiae transporters AUS1 and PDR11. To investigate ...
متن کاملTritium suicide selection identifies proteins involved in the uptake and intracellular transport of sterols in Saccharomyces cerevisiae.
Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that i...
متن کاملThe zinc cluster protein Sut1 contributes to filamentation in Saccharomyces cerevisiae.
Sut1 is a transcriptional regulator of the Zn(II)(2)Cys(6) family in the budding yeast Saccharomyces cerevisiae. The only function that has been attributed to Sut1 is sterol uptake under anaerobic conditions. Here, we show that Sut1 is also expressed in the presence of oxygen, and we identify a novel function for Sut1. SUT1 overexpression blocks filamentous growth, a response to nutrient limita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 381 Pt 1 شماره
صفحات -
تاریخ انتشار 2004